- 作者:Shaofu Xu, Jing Wang, Haowen Shu, Zhike Zhang, Sicheng Yi, Bowen Bai, Xingjun Wang, Jianguo Liu, Weiwen Zou*
- 摘要:Optical implementations of neural networks (ONNs) herald the next-generation high-speed and energy-efficient deep learning computing by harnessing the technical advantages of large bandwidth and high parallelism of optics. However, because of limited hardware scale and incomplete numerical domain, the majority of existing ONNs are merely studied and benchmarked with basic classification tasks. Given that regression (including image reconstruction, gaming, protein-fold prediction, and nanostructure design) is a fundamental form of deep learning and accounts for a large part of current artificial intelligence applications, it is necessary to master deep learning regression for further development and deployment of ONNs. Here, we demonstrate a silicon-based optical coherent dot-product chip (OCDC) capable of completing deep learning regression tasks. The OCDC adopts optical fields rather than intensities to represent values in the complete real-value domain. It conducts matrix multiplications and convolutions in neural networks of any complexity via reconfiguration and reusing, laying the foundation of the sophisticated neural network implementation. Hardware deviations are compensated via in-situ backpropagation control owing to the simplicity of chip architecture, thus enhancing the numerical accuracy of analog computing. Therefore, the OCDC meets the fundamental requirement for regression tasks and we successfully demonstrate a representative neural network, the AUTOMAP (a cutting-edge neural network model for image reconstruction). The quality of reconstructed magnetic resonance images (MRI) by the OCDC and a 32-bit digital computer is comparable. To best of our knowledge, there is no precedent of performing such state-of-the-art regression tasks on ONN chip. It is anticipated that the OCDC can promote novel accomplishment of ONNs in modern AI applications including autonomous driving, natural language processing, medical diagnosis, and scientific study. Moreover, the OCDC and auxiliary electronics have the potential to be monolithically fabricated with CMOS-compatible silicon photonic integration technologies.
- 出版源:Light :Science& Applications
- 论文链接